$f(x)$ $g(x)$

The graphs of $f(x)$ and $g(x)$ are given above. Use them to evaluate each quantity below. Write DNE if the limit or value does not exist (or if it's infinity).

1. $\displaystyle \lim_{x\to 1^-} [f(x) + g(x) ]$
2. $\displaystyle \lim_{x\to 2^-} [f(x)g(x) ]$
3. $\displaystyle \lim_{x\to 1^-} [f(x)/g(x) ]$
4. $\displaystyle \lim_{x\to 2^+} [f(x)/g(x) ]$
5. $\displaystyle \lim_{x\to 1^+} [f(x) + g(x) ]$
6. $\displaystyle \lim_{x\to 1^+} [f(x)/g(x) ]$
7. $\displaystyle \lim_{x\to 1^-} [f(x)g(x) ]$
8. $\displaystyle \lim_{x\to 2^+} [f( g(x) ) ]$
9. $\displaystyle \lim_{x\to 2^-} [f(x) + g(x) ]$
10. $f(1)g(1)$
11. $f(1) + g(1)$
12. $\displaystyle \lim_{x\to 2^-} [f( g(x) ) ]$
13. $f( g(2) )$
14. $\displaystyle \lim_{x\to 2^+} [f(x) + g(x) ]$
15. $f(1)/g(1)$
16. $\displaystyle \lim_{x\to 1^+} [f(x)g(x) ]$
17. $f(2)g(2)$
18. $f(2)/g(2)$
19. $\displaystyle \lim_{x\to 2^+} [f(x)g(x) ]$
20. $\displaystyle \lim_{x\to 2^-} [f(x)/g(x) ]$
21. $\displaystyle \lim_{x\to 1^+} [f( g(x) ) ]$
22. $f(2) + g(2)$
23. $f( g(1) )$
24. $\displaystyle \lim_{x\to 1^-} [f( g(x) ) ]$

Your overall score for this problem is