Suppose that
[math]

(A) List all the critical values of [math] .
Note: If there are no critical values, enter 'NONE'.

(B) Use interval notation to indicate where [math] is increasing.
Note: Use 'INF' for [math] , '-INF' for [math] ,
and use 'U' for the union symbol. If there is no interval, enter 'NONE'.
Increasing:

(C) Use interval notation to indicate where [math] is decreasing.
Decreasing:

(D) List the [math] values of all local maxima of
[math] . If there are no local maxima, enter 'NONE'.
[math] values of local maximums =

(E) List the [math] values of all local minima of
[math] . If there are no local minima, enter 'NONE'.
[math] values of local minimums =

(F) Use interval notation to indicate where [math] is concave up.
Concave up:

(G) Use interval notation to indicate where [math] is concave down.
Concave down:

(H) List the [math] values of all the inflection points of
[math] . If there are no inflection points, enter 'NONE'.
[math] values of inflection points =

(I) Find all horizontal asymptotes of [math] , and list the [math] values below.
If there are no horizontal asymptotes, enter 'NONE'
[math] values of horizontal asymptotes =

(J) Find all vertical asymptotes of [math] , and list the [math] values below.
If there are no vertical asymptotes, enter 'NONE'
[math] values of vertical asymptotes =

(K) Use all of the preceding information to sketch a graph of [math] .
When you're finished, enter a "1" in the box below.
Graph complete: