For the function [math] defined on the interval [math], find all intervals where the function is strictly increasing or strictly decreasing. Your intervals should be as large as possible.
[math] is strictly increasing on
[math] is strictly decreasing on
(Give your answer as an interval or a list of intervals, e.g., (-infinity,8] or (1,5),(7,10) .)

Find and classify all local max's and min's. (For the purposes of this exercise we'll call an endpoint [math] a "local max" if [math] whenever [math] is near [math] on the left or on the right. Similarly, we'll call it a "local min" if [math] whenever [math] is near [math] on the left or right.)

Enter your maxima and minima as comma-separated xvalue,classification pairs. For example, if you found that [math] was a local minimum and [math] was a local maximum, you should enter (-2,min), (3,max). If there were no maximum, you must drop the parentheses and enter -2,min.